
Deep Counterfactual Regret Minimization

Noam Brown∗

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
noamb@cs.cmu.edu

Adam Lerer∗

Facebook AI Research
New York, NY 10003
alerer@fb.com

Sam Gross
Facebook AI Research
New York, NY 10003
sgross@fb.com

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

sandholm@cs.cmu.edu

Abstract

Counterfactual Regret Minimization (CFR) is the leading algorithm for solving
large imperfect-information games. It iteratively traverses the game tree in order
to converge to a Nash equilibrium. In order to deal with extremely large games,
CFR typically uses domain-specific heuristics to simplify the target game in a
process known as abstraction. This simplified game is solved with tabular CFR,
and its solution is mapped back to the full game. This paper introduces Deep
Counterfactual Regret Minimization (Deep CFR), a form of CFR that obviates
the need for abstraction by instead using deep neural networks to approximate
the behavior of CFR in the full game. We show that Deep CFR is principled and
achieves strong performance in the benchmark game of heads-up no-limit Texas
hold’em poker. This is the first successful use of function approximation in CFR
for large games.

1 Introduction

Imperfect-information games model strategic interactions between multiple agents with only partial
information. They are widely applicable to real-world domains such as negotiations, auctions, and
cybersecurity interactions. Typically in such games, one wishes to find an approximate equilibrium
in which no player can improve by deviating from the equilibrium.

The most successful family of algorithms for imperfect-information games have been variants of
Counterfactual Regret Minimization (CFR) [29]. CFR is an iterative algorithm that converges to a
Nash equilibrium in two-player zero-sum games. In order to deal with extremely large imperfect-
information games, abstraction is typically used to simplify a game by bucketing similar states
together and treating them identically. The simplified (abstracted) game is approximately solved
via tabular CFR. Forms of tabular CFR have been used in all recent milestones in the benchmark
domain of poker [2, 21, 4]. However, constructing an effective abstraction requires extensive domain
knowledge and the abstract solution may only be a coarse approximation of a true equilibrium.

In constrast, reinforcement learning has been successfully extended to large state spaces by using
function approximation with deep neural networks rather than a tabular representation of the policy
(deep RL). This approach has led to a number of recent breakthroughs in constructing strategies

∗Equal contribution

Preprint. Work in progress.

a
rX

iv
:1

8
1
1
.0

0
1
6
4
v
1

[c

s.
A

I]

1
 N

o
v
 2

0
1
8

in large MDPs [20] as well as in zero-sum complete-information games such as Go [25, 24]2.
Importantly, deep RL can learn good strategies with relatively little domain knowledge for the specific
game [25].

However, most popular RL algorithms do not converge to good policies (equilibria) in imperfect-
information games in theory or in practice.

Rather than use tabular CFR with abstraction, this paper introduces a form of CFR, which we refer
to as Deep Counterfactual Regret Minimization, that uses function approximation with deep neural
networks to approximate the behavior of tabular CFR on the full, unabstracted game.

2 Notation and Background

In an imperfect-information extensive-form (that is, tree-form) game there is a finite set of players,
P . A node (or history) h is defined by all information of the current situation, including private
knowledge known to only one player. A(h) is the actions available in a node and P (h) is the unique
player who acts at that node. If action a ∈ A(h) leads from h to h′, then we write h · a = h′. H is
the set of all node in the game tree. Z ⊆ H are terminal nodes for which no actions are available.
For each player p ∈ P , there is a payoff function up : Z → R. In this paper we assume P = {1, 2}
and u1 = −u2 (the game is two-player zero-sum). We denote the range of payoffs in the game by ∆.

Imperfect information is represented by information sets (infosets) for each player p ∈ P . For any
infoset I belonging to p, all nodes h, h′ ∈ I are indistinguishable to p. Moreover, every non-terminal
node h ∈ H belongs to exactly one infoset for each p. We represent the set of all infosets belonging
to p where p acts by Ip.

A strategy (or policy) σ(I) is a probability vector over actions for acting player p in infoset I . The
probability of a particular action a is denoted by σ(I, a). Since all states in an infoset belonging
to p are indistinguishable, the strategies in each of them must be identical. We define σp to be a
strategy for p in every infoset in the game where p acts. A strategy profile σ is a tuple of strategies,
one for each player. The strategy of every player other than p is represented as σ−p. up(σp, σ−p) is
the expected payoff for p if all players play according to the strategy profile 〈σp, σ−p〉.
πσ(h) = Πh′→avhσP (h)(h

′, a) is the probability h is reached if all players play according to σ.

πσ
p (h) is the contribution of p to this probability (that is, the probability of reaching h if chance and

all players other than p always choose actions leading to h, but p plays according to σp). πσ
−p(h)

is the contribution of chance and all players other than p (that is, the probability of reaching h if p
chooses actions leading toward h, but chance and all players other than p play according to σ−p).
πσ
−p(I) =

∑

h∈I π
σ
−p(h) is the probability of reaching I if p chooses actions leading toward I , but

chance and all players other than p play according to σ−p.

A best response to σp is a strategy BR(σp) such that up

(

σp, BR(σp)
)

= maxσ′

−p
ui(σp, σ

′
−p). A

Nash equilibrium σ∗ is a strategy profile where everyone plays a best response: ∀p, up(σ
∗
p , σ

∗
−p) =

maxσ′

p
up(σ

′
p, σ

∗
−p) [22]. The exploitability e(σp) of a strategy σp in a two-player zero-sum game is

how much worse it does versus a best response compared to a Nash equilibrium strategy. Formally,
e(σp) = up

(

σ∗
p , BR(σ∗

p)
)

− up

(

σp, BR(σp)
)

. We measure total exploitability
∑

p∈P e(σp).

2.1 Counterfactual Regret Minimization (CFR)

CFR is an iterative algorithm that maintains a regret value (defined later) for each action in each
infoset, and uses those values to define a strategy for each player on each iteration. Based on those
strategies, CFR updates the regret values.

The expected value (or simply value) to p at node h given that all players play according to strategy
profile σ from that point on is defined as vσp (h). The value to p at infoset I where p acts is the weighted
average of the value of each node in the infoset, where the weight is proportional to p’s belief that they
are in that node conditional on knowing they are in I . Formally, vσ(I) =

∑

h∈I

(

πσ
−p(h|I)vσp (h)

)

and vσ(I, a) =
∑

h∈I

(

πσ
−p(h|I)vσp (h · a)

)

where πσ
−p(h|I) =

πσ
−p(h)

πσ
−p

(I) .

2Deep RL has also been applied successfully to some partially observed games such as Doom [17], as long
as the hidden information is not too strategically important.

2

Let σt be the strategy profile on iteration t. The instantaneous regret rt(I, a) of player p = P (I) for
action a in infoset I on iteration t is how much better off p would have been for choosing action a
with 100% probability (and playing according to σt thereafter) rather than playing according to σt in
I , weighed by the probability that p would have reached I if he tried to do so that iteration. Formally,

rt(I, a) = πσt

−p(I)
(

vσ
t

(I, a)− vσ
t

(I)
)

(1)

Furthermore, the regret on iteration T is RT (I, a) =
∑T

t=1 r
t(I, a). Additionally, RT

+(I, a) =

max{RT (I, a), 0} and RT (I) = maxa{RT (I, a)}. Regret for p in the entire game is RT
p =

maxσ′

p

∑T

t=1

(

up(σ
′
p, σ

t
−p)− up(σ

t
p, σ

t
−p)

)

.

CFR determines an iteration’s strategy by applying any of several regret minimization algorithms to
each infoset [19, 8]. Typically, regret matching (RM) is used as the regret minimization algorithm
within CFR due to RM’s simplicity and lack of parameters [11].

In RM, a player picks a distribution over actions in an infoset in proportion to the positive regret on
those actions. Formally, on each iteration t+1, p selects actions a ∈ A(I) according to probabilities

σt+1(I, a) =
Rt

+(I, a)
∑

a′∈A(I) R
t
+(I, a

′)
(2)

If
∑

a′∈A(I) R
t
+(I, a

′) = 0 then any arbitrary strategy may be chosen. Typically each action is

assigned equal probability, but in this paper we choose the action with highest regret with probability
1, which empirically helps RM better cope with approximation error.

If a player plays according to regret matching in infoset I on every iteration, then on iteration

T , RT (I) ≤ ∆
√

|A(I)|
√
T [7]. If a player plays according to CFR on every iteration, then

RT
p ≤

∑

I∈Ip
RT (I). So, as T →∞,

RT
p

T
→ 0.

The average strategy σ̄T
p (I) for an infoset I on iteration T is σ̄T

p (I) =
∑

T
t=1

(

πσt

p (I)σt
p(I)

)

∑
T
t=1

πσt
p (I)

.

In two-player zero-sum games, if both players’ average regret satisfies
RT

p

T
≤ ε, then their average

strategies 〈σ̄T
1 , σ̄

T
2 〉 form a 2ε-Nash equilibrium [27]. Thus, CFR constitutes an anytime algorithm

for finding an ε-Nash equilibrium in two-player zero-sum games.

Although CFR theory calls for both players to simultaneously update their regrets on each iteration,
in practice far better performance is achieved by alternating which player updates their regrets on
each iteration. However, no converge proof is known for such variants [9].

2.2 Linear CFR

There exist a number of variants of CFR that achieve much faster performance. Until recently, CFR+
was the fastest and most popular variant [26]. However, CFR+ does not handle variance well and
is therefore difficult to use with sampling and function approximation [23]. In this paper we use
Linear CFR (LCFR), a new variant of CFR that is faster than CFR+ in certain settings (particularly
in settings with wide distributions in payoffs) even without sampling, and which tolerates error far
better than CFR+ [5]. LCFR is identical to CFR, except iteration t is weighed by t. Formally, regret
is defined as

RT (I, a) =

T
∑

t=1

(

trt(I, a)
)

(3)

and the average strategy is defined as

σ̄T
p (I) =

∑T

t=1

(

tπσt

p (I)σt
p(I)

)

∑T

t=1

(

tπσt

p (I)
)

(4)

We will use these definitions for regret and average strategy throughout the paper. Alternating updates
with LCFR is in practice two orders of magnitude faster than vanilla CFR in large benchmark games.

3

3 Related Work

CFR is not the only iterative algorithm capable of solving large imperfect-information games. In
addition to first-order methods, there exist algorithms such as Fictitious Play that converge to an
equilibrium solution. Neural Fictitious Self Play (NFSP) [12] previously combined deep learning
function approximation with Fictitious Play to produce an AI for limit Texas hold’em, a large
imperfect-information game. However, Fictitious Play has weaker theoretical convergence guarantees
than CFR, and in practice converges far slower. NFSP has not been shown to be competitive with
CFR-based approaches. First-order methods converge to a Nash equilibrium in O(1/T) [13, 16],

which is far better than CFR’s theoretical bound of O(1/
√
T). However, in practice the fastest

variants of CFR are substantially faster than the best first-order methods. Moreover, CFR is more
robust to error and therefore likely to do better when combined with function approximation.

Past work has investigated using deep learning to estimate values at the depth limit of a subgame in
imperfect-information games [21]. However, tabular CFR was used within the subgames themselves.

Prior work has combined linear function approximation with CFR [28] in an algorithm called
Regression CFR (RCFR). This algorithm defines a number of features of the infosets in a game and
calculates weights to approximate the regrets that a tabular CFR implementation would produce.
However, RCFR uses full traversals of the game tree (which is infeasible in large games), a set of
pre-defined features, and has only been tested on toy games. It is therefore best viewed as a proof of
concept that function approximation can be applied to CFR.

Concurrent work has also investigated a similar combination of deep learning with CFR, in an
algorithm referred to as Double Neural CFR [1]. However, the authors consider only small games
(thousands of nodes) that can be modeled exactly by a neural network, whereas we are interested in
using function approximation to improve the sample complexity of large games (billions to trillions
of nodes) by generalizing across infosets using a model that has much fewer parameters than there
are infosets. There are important differences between our approaches in how training data is collected
and how the behavior of CFR is approximated.

4 Description of the Deep Counterfactual Regret Minimization Algorithm

In this section we describe a way to approximate Linear CFR using deep learning function approxi-
mation. The goal of Deep CFR is to approximate the behavior of Linear CFR while avoiding full
traversals of the game tree. To begin, we define the instantaneous advantage dt(I, a) of an action

as dt(I, a) = vσ
t

(I, a) − vσ
t

(I) and the advantage DT (I, a) as regret (as defined in Equation 3)

divided by the total linear reach
∑T

t=1

(

tπσt

−p(I)
)

of the infoset. That is,

DT (I, a) =
RT (I, a)

∑T

t=1

(

tπσt

−p(I)
)

(5)

Since total linear reach is identical for all actions in an infoset, the formula for RM given in equation
(2) can be restated as

σt+1(I, a) =
Dt(I, a)+

∑

a′∈A(I) D
t(I, a′)+

(6)

At a high level, Deep CFR trains a value network f : I → R
|A| on each iteration t defined by

parameters θtp. This network takes as input a description of an infoset and outputs an estimate of the

advantage for each action in the infoset. This output vector is denoted by D̂t(I) and the prediction of

the advantage for action a specifically is denoted by D̂t(I, a). Ideally, D̂t(I, a) ≈ Dt(I, a). This
allows Deep CFR to approximate the behavior of RM to produce strategy σt+1(I) for infoset I on
iteration t+ 1. In order to conduct alternating updates in which only one player’s strategy changes
on each iteration, Deep CFR maintains a separate set of parameters θtp for each player p. We choose
to predict advantages rather than regrets to allow the network to better generalize among strategically
similar situations that differ only in how often they are reached during play.

The training data for the network is a set of sampled infoset advantages from iterations 1 through
t stored in a buffer Bv

p for player p. We choose our mechanism for collecting samples based on
two desirable goals. First, the number of samples for infoset I in Bv

p should, in expectation, be

4

proportional to the total linear reach
∑T

t=1

(

tπσt

−p(I)
)

of the infoset. This focuses the network on
infosets that have relatively larger regret and are therefore more “important”. Second, the samples for
infoset I action a should, in expectation, be equal to the true advantage Dt(I, a) of the action.

To achieve these goals, Deep CFR conducts a constant number K of partial traversals of the game
tree on each iteration, with the path of the traversal determined according to external sampling. In
external sampling, the traversal explores all actions in the traversing player’s infosets while sampling
a single action in opponent infosets and chance nodes. When a terminal node is reached, the value
is passed back up. In chance and opponent infosets, the value of the sampled action is passed back
up unaltered. In traverser infosets, the value passed back up is the weighted average of all action
values, where action a’s weight is σt(I, a). This produces samples of this iteration’s contribution to
the advantages for the actions in various infosets I . These samples are added to the buffer (using
reservoir sampling if capacity is exceeded), and a new network is trained to determine parameters θt

by minimizing MSE between the predicted advantage D̂t(I, a) and the samples D̃t(I, a) drawn from
the buffer. Critically, because advantages are the weighted average over all previous iterations, once a
sample is added to the buffer it is never removed (except through reservoir sampling), even when the
next CFR iteration begins. However, in order to mimic the linear weighting component of Linear
CFR, samples from iteration t are weighed by b(t+ 1)/2c rather than all samples in the buffer being
weighed equally. While we use MSE as the loss, any Bregman divergence loss is acceptable.

While almost any sampling scheme is acceptable so long as the samples are weighed properly,
external sampling has the convenient property that it achieves both of our desired goals by assigning
all samples in an iteration equal weight. Additionally, exploring all of a traverser’s actions helps
reduce variance. However, external sampling may be impractical in games with extremely large
branching factors, so a different sampling scheme may be desired in those cases.

In addition to the value network, a separate policy network g : I → R
|A| approximates the average

strategy at the end of the run, because it is the average strategy played over all iterations that
converges to a Nash equilibrium. To do this, we maintain a separate buffer Bs

p of sampled infoset
probability vectors for each player p. Whenever an infoset I belonging to player p is traversed during
a player 1− p traversal of the game tree via external-sampling, the infoset probability vector σt(I) is
added to Bs

p and assigned weight t.

Theorem 1 states that if the buffers used in Deep CFR are infinitely large, we conduct an infinite
number of traversals to collect data, and our function approximator achieves the minimum possible
error on the value network and the minimum possible error on the policy network, then Deep CFR
perfectly mimcs Linear CFR.

Theorem 1. Assume Deep CFR conducts K traversals on each iteration of CFR, the value network
and policy network buffers are infinitely large, and the function approximator achieves the minimum
possible error on the value network and the policy network. Then as K → ∞, Deep CFR’s
convergence bound approaches the convergence bound of Linear CFR.

Algorithm 1 Deep Counterfactual Regret Minimization

Br
0 = ∅, Br

1 = ∅, Bs = ∅
for p = 1..2 do

Initialize θ0p so that f(I, a|θ0p) = 0 for all I and all a

for t = 1..Niter do
p← t % 2
for n = 1..Ntraversal do

COLLECTSAMPLES(∅, p, θt−1
0 , θt−1

1 , Br
p, B

s)

θtp ← TRAINNETWORK(Br
p, 0) . Retrain the value network incorporating newly collected data

θt1−p ← θt−1
1−p . We update only one player’s value network per iteration

θ(s) ← TRAINNETWORK(Bs, 1) . Train the final average strategy

return θ(s)

5

Algorithm 2 Sample Collection Traversal

function COLLECTSAMPLES(h, p, θ0, θ1, B
r
p, B

s)
if h is terminal then

return up(h) . Return the traverser’s payoff
else if P (h) = p then . If it’s the traverser’s turn to act

σ(I)← CALCULATE-STRATEGY(I(h), θp) . Compute infoset action probabilities
v ← 0
for a ∈ A(h) do

v(a)← COLLECTSAMPLES(h · a, p, θ0, θ1, Br
p, B

s) . Traverse each action

v ← v + σ(I, a) · v(a) . Update the expected value

for a ∈ A(h) do

d̃(I, a)← v(a)− v

Add {(I, d̃(I), t)} to Br
p . Add vector of action advantages to buffer

else if P (h) = 1− p then . If it’s the opponent’s turn to act
σ(I)← CALCULATE-STRATEGY(I(h), θ1−p) . Compute infoset action probabilities
Add {(I, σ(I), t)} to Bs . Add vector of action probabilities to buffer
a ∼ σ(I) . Sample an action from the probability distribution
return COLLECTSAMPLES(h · a, p, θ0, θ1, Br

p, B
s)

else . h is a chance node
a ∼ σ(h) . Sample a chance outcome
return COLLECTSAMPLES(h · a, p, θ0, θ1, Br

p, B
s)

Algorithm 3 Infoset Strategy Computation

function CALCULATE-STRATEGY(I, θp) . Calculates strategy based on predicted advantages
sum← 0
D̂(I)← f(I|θp) . Estimate vector of advantages
for a ∈ A(I) do

sum← sum +max{0, D̂(I, a)}
if sum > 0 then . Apply Regret Matching

for a ∈ A(I) do

σ(I, a)← max{0,D̂(I,a)}
sum

else . Choose the highest-advantage action
for a ∈ A(I) do

σ(I, a)← 0

σ(I, argmaxa{D̂(I, a)}) = 1

return σ(Ii)

Algorithm 4 Network Training

function TRAINNETWORK(B,S)
Initialize θ randomly.
for b = 1..Ntrain do

for i = 1..Nbatch do
(Ii, yi, ti) ∼ B . sample an infoset, action pair from the buffer
ẑ ← f(Ii|θ) . predict regret or strategy vector
if S then

for a ∈ A do
ŷi,a ← eẑa

∑
a′ e

ẑ
a′

. apply softmax if computing strategy vector

else
ŷi ← ẑ

L ←∑Nbatch

0 ti(yi − ŷi)
2

θ ← StepAdam(θ,∇θL)
return θ

6

5 Experimental Setup

We measure the performance of Deep CFR (Algorithm 1) in approximating an equilibrium in heads-
up flop hold’em poker (FHP). FHP is a large game with over 1011 nodes and 108 infosets. In contrast,
the network we use has 61,604 parameters. FHP is similar to heads-up no-limit Texas hold’em
(HUNL) poker, but has only two betting rounds rather than four, and all bets and raises must be equal
to the size of the pot. The rules for FHP are given in Appendix A.

We also measure performance relative to domain-specific abstraction techniques in the benchmark
domain of HUNL poker, which has about 10161 infosets. A standard approach to developing an AI for
such large imperfect-information games is to first limit the action space to a small discrete number and
solve the coarsened version of the game. This solution is referred to as the blueprint strategy [4, 6].
Then, real-time solving is applied on top of the blueprint strategy to calculate responses to actions
not included in the blueprint. Real-time solving is beyond the scope of this paper, so we simply
compare the performance of a blueprint strategy computed with traditional information-abstraction
techniques [14, 10, 3] to one computed with Deep CFR. The blueprint version of HUNL we test on
requires all bets and raises to be equal to the size of the pot. This blueprint game has over 1015 nodes
and over 1012 infosets.

5.1 Network Architecture

We use the neural network architecture shown in Figure 5.1 for both the network that computes
infoset and action values for each player and the network that approximates the average strategy at the
end of MC-CFR. This network has a depth of 7 layers and 61,604 parameters. Infosets consist of sets
of cards and bet history. The cards are represented as the sum of three embeddings: a rank embedding
(1-13), a suit embedding (1-4), and a card embedding (1-52). These embeddings are summed for each
set of permutation invariant cards (hole, flop, turn, river), and these are concatenated. In each round
of betting we specify a maximum number of sequential actions, leading to NroundsNseq−actions

total unique betting positions. Each betting position is encoded by three numbers: the first number is
binary and denotes if a bet was made; the second denotes the size of the bet; the third denotes if this
is the current betting position.

The neural network model begins with separate branches for the cards and bets, with three and two
layers respectively. Features from the two branches are combined and three additional fully connected
layers are applied. Each fully-connected layer consists of xi+1 = ReLU(Ax[+x]). The optional skip
connection [+x] is applied only on layers that have equal input and output dimension. Normalization
(to zero mean and unit variance) is applied to the last-layer features of each position. The network
architecture was not highly tuned, but normalization and skip connections were used because they
were found to be important to encourage fast convergence when running preliminary experiments on
pre-computed equilibrium strategies in FHP.

There are at most a few thousand infosets on the first betting round, so we simply use a table rather
than function approximation to determine the regrets and average strategies for the first betting round.

5.2 Model training

The value model is trained from scratch each CFR iteration, starting from a random initialization. We
perform 4,000 mini-batch SGD iterations using a batch size of 10,000 and perform parameter updates
using the Adam optimizer [15] with a learning rate of 0.001, with gradient norm clipping to 13.

We allocate a maximum size of 40 million infosets to each player’s value buffer Bv
p and the strategy

buffer Bs. Once a buffer is full it is updated via reservoir sampling, maintaining a uniform distribution
over infoset values from all prior iterations. We record the iteration at which each sample was collected
to weight the training loss for linear CFR.

6 Experimental Results

Figure 6 compares the performance of Deep CFR to variously-sized domain-specific abstractions. The
abstractions are solved using external-sampling Linear Monte Carlo CFR [18, 5], which is the state

3For HUNL we use 32,000 SGD iterations and a batch size of 20,000.

7

[9] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for
sequential decision processes and extensive-form games. arXiv preprint arXiv:1809.03075,
2018.

[10] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

[11] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilib-
rium. Econometrica, 68:1127–1150, 2000.

[12] Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

[13] Samid Hoda, Andrew Gilpin, Javier Peña, and Tuomas Sandholm. Smoothing techniques
for computing Nash equilibria of sequential games. Mathematics of Operations Research,
35(2):494–512, 2010. Conference version appeared in WINE-07.

[14] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating state-space
abstractions in extensive-form games. In Proceedings of the 2013 International Conference
on Autonomous Agents and Multiagent Systems, pages 271–278. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algo-
rithms for extensive-form game solving via improved smoothing functions. Mathematical
Programming, pages 1–33.

[17] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement
learning. In AAAI, pages 2140–2146, 2017.

[18] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 1078–1086, 2009.

[19] Nick Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[21] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 2017.

[22] John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36:48–49, 1950.

[23] Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and Michael
Bowling. Variance reduction in monte carlo counterfactual regret minimization (vr-mccfr) for
extensive form games using baselines. arXiv preprint arXiv:1809.03057, 2018.

[24] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[25] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

[26] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 645–652, 2015.

[27] Kevin Waugh. Abstraction in large extensive games. Master’s thesis, University of Alberta,
2009.

10

[28] Kevin Waugh, Dustin Morrill, Drew Bagnell, and Michael Bowling. Solving games with
functional regret estimation. In AAAI Conference on Artificial Intelligence (AAAI), 2015.

[29] Martin Zinkevich, Michael Johanson, Michael H Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), pages 1729–1736, 2007.

11

A Flop Hold’em Poker Rules

In the version of FHP we use in this paper, there are two players and the position of the two players
alternate after each hand. On each betting round, each player can choose to either fold, call, or
raise. Folding results in the player losing and the money in the pot being awarded to the other player.
Calling means the player places a number of chips in the pot equal to the opponent’s share. Raising
means that player adds more chips to the pot than the opponent’s share. A round ends when a player
calls (if both players have acted). If a player raises, they first put into the pot the number of chips
the other player has contributed so far, and then an additional number of chips equal to the size of
the new pot (a pot-sized raise). There cannot be more than one raise in the first betting round or
more than two raises in the second betting round, so there is a limited number of actions in the game.
Additionally, calling is not allowed for the first action in the game.

At the start of each hand of FHP, both players are dealt two private cards from a standard 52-card
deck. P1 must place $50 in the pot and P2 must place $100 in the pot. A round of betting then occurs
starting with P1. When the round ends, three community cards are dealt face up that both players can
ultimately use in their final hands. Another round of betting occurs, starting with P2 this time. At the
end of the betting round, unless a player has folded, the player with the best five-card poker hand
constructed from their two private cards and the five community cards wins the pot. In the case of a
tie, the pot is split evenly.

B Proof of Theorem 1

Proof. Consider an information set I in which player p acts. Let ṽσ
t

(I, a) be the expected value

return by the external sampling iteration for infoset I action a and let ṽσ
t

(I, a) be the value for

infoset I . From Lemma 1 in [18], we know that E[ṽσ
t

(I)] = vσ
t

(I) and E[ṽσ
t

(I, a)] = vσ
t

(I, a).

Since K →∞, so the average of all samples d̃σ
t

(I, a) = ṽσ
t

(I, a)− ṽσ
t

(I) in the buffer approaches

E[ṽσ
t

(I, a)− ṽσ
t

(I)] = vσ
t

(I, a)− vσ
t

(I) = dσ
t

(I, a).

Let nt be the number of samples of I on iteration t. The probability that I is sampled during a

traversal on iteration t is πσt

−p(I). Since there are K traversals on each iteration, so E[nt] = Kπσt

−p(I)

and E[tnt∑
T

t′=1
(tnt′)

] =
tπσt

−p(I)
∑

T

t′=1

(

tπσt′

−p
(I)

) . Since K → ∞, so tnt∑
T

t′=1
(tnt′)

→ E[tnt∑
T

t′=1
(tnt′)

] =

tπσt

−p(I)
∑

T

t′=1

(

tπσt′

−p
(I)

) .

Since samples from iteration t are assigned weight t and since the value network achieves minimum

error, so D̂T (I, a) =
∑

T
t=1

(

tπσt

−p(I)d
σt

(I,a)
)

∑
T
t=1

(

tπσt

−p
(I)

) = DT (I, a).

Similarly, since samples from iteration t are assigned weight t and since the policy network achieves

minimum error, so σ̂T (I, a) =
∑

T
t=1

(

tπσt

−p(I)σ
t(I,a)

)

∑
T
t=1

(

tπσt

−p
(I)

) = σ̄T (I, a).

12

	1 Introduction
	2 Notation and Background
	2.1 Counterfactual Regret Minimization (CFR)
	2.2 Linear CFR

	3 Related Work
	4 Description of the Deep Counterfactual Regret Minimization Algorithm
	5 Experimental Setup
	5.1 Network Architecture
	5.2 Model training

	6 Experimental Results
	7 Conclusions
	A Flop Hold'em Poker Rules
	B Proof of Theorem ??

